- Patil, P., Du, J.-H., and Tibshirani, R.J. Optimal ridge regularization for out-of-distribution prediction. International Conference on Machine Learning, 2024.
- Saragadam, V., Han, Z., Boominathan, V., Huang, L., Tan, S., Fröch, J. E., Böhringer, K. F., Baraniuk, R. G., Majumdar, A., and Veeraraghavan, A. Foveated Thermal Computational Imaging in the Wild Using All-Silicon Meta-Optics. Optica, 2024.
- LeJeune, D., Patil, P., Javadi, H., Baraniuk, R. G., and Tibshirani, R. J. Asymptotics of the Sketched Pseudoinverse. SIAM Journal on Mathematics of Data Science (SIMODS), 2024.
- Saragadam, V., Balestriero, R., Veeraraghavan, A., and Baraniuk, R. G. DeepTensor: Low-Rank Tensor Decomposition with Deep Network Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
- Kota, P. K., Vu, H.-A., LeJeune, D., Han, M., Syed, S., Baraniuk, R. G., and Drezek, R. A. Expanding Multiplexing on Sensor-Constrained Microfluidic Partitioning Systems. Analytical Chemistry, 2023.
- Balestriero, R., Humayun, A. I., and Baraniuk, R. G. On the Geometry of Deep Learning. Notices of the American Mathematical Society, August 2024.
- Alemohammad, S., Humayun, A. I., Agarwal, S., Collomosse, J., and Baraniuk, R. G. Self-Improving Diffusion Models with Synthetic Data. Preprint, 2024.
- Humayun, A. I., Balestriero, R., and Baraniuk, R. G. Deep Networks Always Grok and Here is Why. International Conference on Machine Learning (ICML), 2024.
- Nguyen, T., Uribe, C. A., Nguyen, T. M., and Baraniuk, R. G. PIDformer: Transformer Meets Control Theory. International Conference on Machine Learning (ICML), 2024.
- Vyas, K., Humayun, A. I., Dashpute, A., Baraniuk, R. G., Veeraraghavan, A., and Balakrishnan, G. Learning Transferable Features for Implicit Neural Representations. Neural Information Processing Systems (NeurIPS), 2024.
- Ronen, O., Humayun, A. I., Balestriero, R., Baraniuk, R. G., and Yu, B. ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks. Preprint (International Conference on Learning Representations), 2025.
- Roy, A., Shah, A., Shah, K., Roy, A., and Chellappa, R. Cap2aug: Caption guided image to image data augmentation. IEEE/CVF Winter Conference on Applications of Computer Vision (WCAV), 2025.
- Roy, A., Roy, A., Mitra, S., and Ghosh, K. BRI3L: A Brightness Illusion Image Dataset for Identification and Localization of Regions of Illusory Perception. IEEE International Conference on Image Processing (ICIP), 2024.
- Roy, A., Borse, S., Kadambi, S., Garrepalli, R., Das, D., Mahajan, S., Park, H., Nayak, A., Chellappa, R., Hayat, M., and Porikli, F. DuoLoRA: Cycle-consistent and Rank-disentangled content-style personalization. Preprint, 2024.
- Binev, P., Bonito, A., Cohen, A., Dahmen, W., DeVore, R., and Petrova, G. Solving PDEs with incomplete information. SIAM Journal on Numerical Analysis, 2024.
- Bonito, A., DeVore, R., Petrova, G., and Siegel, J. W. Convergence and error control of consistent PINNs for elliptic PDEs. Preprint, 2024.
- Cohen, A., DeVore, R., and Tadmor, E. Constructions of bounded solutions of div (u) = f in critical spaces. Multiscale, Nonlinear and Adaptive Approximation, 2024.
- DeVore, R., Petrova, G., and Wojtaszczyk, P. A note on best n-term approximation for generalized Wiener classes. Multiscale, Nonlinear and Adaptive Approximation, 2024.
- Dezoort, G., and Hanin, B. Principles for initialization and architecture selection in graph neural networks with ReLU activations. Preprint, 2024.
- Dressler, M., Foucart, S., Joldes, M., de Klerk, E., Lasserre, J. B., and Xu, Y. Optimization-aided construction of multivariate Chebyshev polynomials. Journal of Approximation Theory, 2024.
- Dressler, M., Foucart, S., Joldes, M., de Klerk, E., Lasserre, J.-B., and Xu, Y. Least multivariate Chebyshev polynomials on diagonally determined domains. Preprint, 2024.
- Foucart, S. Linearly embedding sparse vectors from L2 to L1 via deterministic dimension-reducing maps. Explorations in the Mathematics of Data Science, 2024.
- Foucart, S., and Liao, C. S-procedure relaxation: a case of exactness involving Chebyshev centers. Explorations in the Mathematics of Data Science, 2024.
- Foucart, S., and Paouris, G. Near-optimal estimation of linear functionals with log-concave observation errors. Information and Inference, 2023.
- S. Foucart, C. Liao, Radius of information for two intersected centered hyperellipsoids and implications in optimal recovery from inaccurate data. Journal of Complexity, 2024
- Foucart, S., and Hengartner, N. Worst-case learning under a multifidelity model. SIAM/ASA Journal on Uncertainty Quantification, 2024.
- Hanin, B. Random Fully Connected Neural Networks as Perturbatively Solvable Hierarchies. Journal of Machine Learning Research, 2024.
- Hanin, B., and Zlokapa, A. Bayesian Inference with Deep Weakly Nonlinear Networks. Preprint, 2024.
- Klusowski, J. M., and Siegel, J. W. Sharp Convergence Rates for Matching Pursuit. Preprint, 2024.
- Mao, T., Siegel, J. W., and Xu, J. Approximation Rates for Shallow ReLUk Neural Networks on Sobolev Spaces via the Radon Transform. Preprint, 2024.
- Siegel, J. W. Optimal Approximation Rates for Deep ReLU Neural Networks on Sobolev and Besov Spaces. Journal of Machine Learning Research, 2023.
- Siegel, J. W. Sharp lower bounds on the manifold Widths of Sobolev and Besov spaces. Journal of Complexity, 2024.
- Dym, N., Lawrence, H., and Siegel, J. W. Equivariant Frames and the Impossibility of Continuous Canonicalization. International Conference on Machine Learning, 2024.
- Bansal, A., Borgnia, E., Chu, H.-M., Li, J., Kazemi, H., Huang, F., Goldblum, M., Geiping, J., and Goldstein, T. Cold diffusion: Inverting arbitrary image transforms without noise. Advances in Neural Information Processing Systems (NeurIPS), 2023.
- Hans, A., Schwarzschild, A., Cherepanova, V., Kazemi, H., Saha, A., Goldblum, M., Geiping, J., and Goldstein, T. Spotting llms with binoculars: Zero-shot detection of machine-generated text. Preprint, 2024.
- Hans, A., Wen, Y., Jain, N., Kirchenbauer, J., Kazemi, H., Singhania, P., Singh, S., Somepalli, G., Geiping, J., Bhatele, A., and Goldstein, T. Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs. Advances in Neural Information Processing Systems (NeurIPS), 2024.
- Kazemi, H., Chegini, A., Geiping, J., Feizi, S., and Goldstein, T. What do we learn from inverting CLIP models? Preprint, 2024.
- Shenouda, J., Parhi, R., Lee, K., and Nowak, R. D. Variation spaces for multi-output neural networks: Insights on multi-task learning and network compression. Journal of Machine Learning Research, 2024.
- Shenouda, J., Zhou, Y., and Nowak, R. D. ReLUs Are Sufficient for Learning Implicit Neural Representations. International Conference on Machine Learning (ICML), 2024.
- Zuo, X., Osher, S., and Li, W. Gradient-adjusted underdamped Langevin dynamics for sampling. Preprint, 2024.
- McKenzie, D., Heaton, H., Li, Q., Wu Fung, S., Osher, S., and Yin, W. Three-operator splitting for learning to predict equilibria in convex games. SIAM Journal on Mathematics of Data Science, 2024.
- Han, F., Osher, S., and Li, W. Score-based neural ordinary differential equations for computing mean field control problems. Preprint, 2024.
- F Han, S Osher, W Li, Convergence of Noise-Free Sampling Algorithms with Regularized Wasserstein Proximals. Preprint, 2024.
- G Fu, S Osher, W Pazner, W Li, Generalized optimal transport and mean field control problems for reaction-diffusion systems with high-order finite element computation. Journal of Computational Physics, 2024.
- Tibshirani, R. J., Fung, S. W., Heaton, H., and Osher, S. Laplace Meets Moreau: Smooth Approximation to Infimal Convolutions Using Laplace's Method. Preprint, 2024.
- Heaton, H., Wu Fung, S., and Osher, S. Global solutions to nonconvex problems by evolution of Hamilton-Jacobi PDEs. Communications on Applied Mathematics and Computation, 2024.
- Vidal, A., Fung, S. W., Osher, S., Tenorio, L., and Nurbekyan, L. Kernel Expansions for High-Dimensional Mean-Field Control with Non-local Interactions. Preprint, 2024.
- Kang, Y., Zare, S., Lin, A., Han, Z., Osher, S., and Nguyen, H. Game Theory Meets Data Augmentation. IEEE Transactions on Artificial Intelligence, 2024.
- Vijaywargiya, A., Fu, G., Osher, S., and Li, W. Efficient Computation of Mean field Control based Barycenters from Reaction-Diffusion Systems. Preprint, 2024.
- Meng, T., Liu, S., Li, W., and Osher, S. A Primal-dual hybrid gradient method for solving optimal control problems and the corresponding Hamilton-Jacobi PDEs. Preprint, 2024.
- Liu, S., Liu, S., Osher, S., and Li, W. A first-order computational algorithm for reaction-diffusion type equations via primal-dual hybrid gradient method. Journal of Computational Physics, 2024.
- Zuo, X., Zhao, J., Liu, S., Osher, S., and Li, W. Numerical Analysis on Neural Network Projected Schemes for Approximating One Dimensional Wasserstein Gradient Flows. Preprint, 2024.
- Zhang, B. J., Liu, S., Li, W., Katsoulakis, M. A., and Osher, S. J. Wasserstein proximal operators describe score-based generative models and resolve memorization. Preprint, 2024.
- S Liu, X Zuo, S Osher, W Li, Numerical analysis of a first-order computational algorithm for reaction-diffusion equations via the primal-dual hybrid gradient method. Preprint, 2024.
- G Fu, S Osher, W Li, High order spatial discretization for variational time implicit schemes: Wasserstein gradient flows and reaction-diffusion systems. Journal of Computational Physics, 2024.
- Meng, T., Hao, W., Liu, S., Osher, S. J., and Li, W. Primal-dual hybrid gradient algorithms for computing time-implicit Hamilton-Jacobi equations. Preprint, 2024.
- Nguyen, K., Hieu, N. M., Nguyen, V. D., Ho, N., Osher, S., and Nguyen, T. M. Revisiting over-smoothing and over-squashing using Ollivier-Ricci curvature. International Conference on Machine Learning, 2024.
- Yu, J., Lai, R., Li, W., and Osher, S. Computational mean-field games on manifolds. Journal of Computational Physics, 2024.
- Li, W., Liu, S., and Osher, S. Controlling conservation laws I: Entropy–entropy flux. Journal of Computational Physics, 2024.
- Zuo, X., Osher, S., and Li, W. Primal-Dual Damping algorithms for optimization. Preprint, 2024.
- Patil, P., Wu, Y., and Tibshirani, R. J. Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent. International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.
- Lin, Y., Tabajara, L. M., and Vardi, M. Y. Dynamic Programming for Symbolic Boolean Realizability and Synthesis. Computer Aided Verification: 36th International Conference (CAV), 2024.
- Angelopoulos, A., & Jordan, M.I., & Tibshirani, R.J. Gradient equilibrium in online learning: Theory and applications. Preprint, 2024.
- Patil, P., Du, J-H., & Tibshirani, R.J. Revisiting optimism and model complexity in the wake of overparameterized machine learning. Preprint,2024.
- Angelopoulos, A., Candès, E., & Tibshirani, R.J. Conformal PID control for time series prediction. Neural Information Processing Systems, 2023.
- Ding, T., Angelopoulos, A., Bates, S., Jordan, M., & Tibshirani, R.J. Class-conditional conformal prediction with many classes. Neural Information Processing Systems, 2023.
- Green, A., Balakrishnan, S., & Tibshirani, R.J. Minimax optimal regression over Sobolev spaces via Laplacian eigenmaps on neighborhood graphs. Information and Inference, 2023.
- Hu, A., Green, A., & Tibshirani, R.J. The Voronoigram: Minimax estimation of bounded variation functions from scattered data. Preprint, 2023.
- Luzi, L., Siahkoohi, A., Mayer, P.M., Casco-Rodriguez, J., & Baraniuk, R.G. Boomerang: Local sampling on image manifolds using diffusion models. Transactions on Machine Learning Research, 2024.
- Dar, Y., LeJeune, D., & Baraniuk, R.G. The common intuition to transfer learning can win or lose: Case studies for linear regression. SIAM Journal on Mathematics of Data Science (SIMODS), 2024.
- Roddenberry, M., Saragadam, V., Balakrishnan, G., & Baraniuk, R. G. Implicit Neural Representations and the Algebra of Complex Wavelets. International Conference on Learning Representations (ICLR), 2024.
- Alemohammad, S., Casco-Rodriguez, J., Luzi, L., Humayun, A. I., Babaei, H., LeJeune, D., Siahkoohi, A., & Baraniuk, R. G. Self-Consuming Generative Models Go MAD. International Conference on Learning Representations (ICLR), 2024.
- Luzi, L., LeJeune, D., Siahkoohi, A., Alemohammad, S., Saragadam, V., Babaei, H., Liu, N., Wang, Z., & Baraniuk, R. G. Titan: Bringing The Deep Image Prior to Implicit Representations. IEEE International Conference on Acoustics, Speech and Signal Processing, 2024.
- Sonkar, S., Liu, L., Basu Mallick, D., & Baraniuk, R. G. Code Soliloquies for Accurate Calculations in Large Language Models. International Conference on Learning Analytics and Knowledge (LAK24), 2024.
- Gama, F., Zilberstein, N., Sevilla, M., Baraniuk, R. G., & Segarra, S. Unsupervised Learning of Sampling Distributions for Particle Filters. IEEE Transactions on Signal Processing, 2023.
- Nguyen, T., Ho, N., Patel, A., Anandkumar, A., Jordan, M., & Baraniuk, R. G. A Bayesian Perspective of Convolutional Neural Networks through a Deconvolutional Generative Model. Journal of Machine Learning Research, 2023.
- Nguyen, T. M., Nguyen, T., Bui, L., Do, H., Nguyen, D. K., Le, D. D., Tran-The, H., Ho, N., Osher, S. J., & Baraniuk, R. G. A Probabilistic Framework for Pruning Transformers via a Finite Admixture of Keys. IEEE International Conference on Acoustics, Speech and Signal Processing, 2023.
- Humayun, A. I., Balestriero, R., Balakrishnan, G., & Baraniuk, R. G. SplineCam: Exact Visualization of Deep Neural Network Geometry and Decision Boundaries. Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
- Nguyen, T. M., Nguyen, T., Ho, N., Bertozzi, A. L., Baraniuk, R. G., & Osher, S. A Primal-Dual Framework for Transformers and Neural Networks. International Conference on Learning Representations (ICLR), 2023.
- Tan, J., LeJeune, D., Mason, B., Javadi, H., & Baraniuk, R. G. A Blessing of Dimensionality in Membership Inference through Regularization. International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.
- Luzi, L., Ortiz Marrero, C., Wynar, N., Baraniuk, R. G., & Henry, M. J. Evaluating Generative Networks using Gaussian Mixtures of Image Features. Winter Conference on Applications of Computer Vision (WACV), 2023.
- Nguyen, Tam, Nguyen M. Tan, and Richard Baraniuk .Mitigating Over-smoothing in Transformers via Regularized Nonlocal Functionals. Advances in Neural Information Processing Systems, 2023.
- Arikan, T., Weiss, A., Vishnu, H., Deane, G., Singer, A., & Wornell, G. (2023, June). Learning Environmental Structure Using Acoustic Probes with a Deep Neural Network. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
- F Han, S Osher, W Li. Tensor Train Based Sampling Algorithms for Approximating Regularized Wasserstein Proximal Operators. arXiv preprint arXiv:2401.13125, 2024.
- M Zhou, S Osher, W Li. A Deep Learning Algorithm for Computing Mean Field Control Problems via Forward-Backward Score Dynamics. arXiv preprint arXiv:2401.09547, 2024.
- L Yang, SJ Osher. PDE Generalization of In-Context Operator Networks: A Study on 1D Scalar Nonlinear Conservation Laws. arXiv preprint arXiv:2401.07364, 2024.
- L Yang, S Liu, T Meng, SJ Osher. In-Context Operator Learning with Data Prompts for Differential Equation Problems. Proceedings of the National Academy of Sciences, 120 (39), e2310142120, 2024.
- HY Tan, S Osher, W Li. Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals. arXiv preprint arXiv:2308.14945, 2023.
- L Yang, T Meng, S Liu, SJ Osher. Prompting In-Context Operator Learning with Sensor Data, Equations, and Natural Language. arXiv preprint arXiv:2308.05061, 2023.
- L Yang, S Liu, T Meng, SJ Osher. In-Context Operator Learning for Differential Equation Problems. Preprint, 2023.
- W Li, S Liu, S Osher. A kernel formula for regularized Wasserstein proximal operators Research in the Mathematical Sciences 10 (4), 43
- DeVore, Ronald, et al. Weighted variation spaces and approximation by shallow ReLU networks Applied and Computational Harmonic Analysis, 2024
- J Shenouda, R Parhi, RD Nowak. A Continuous Transform for Localized Ridgelets IEEE International Conference on Sampling Theory and Applications (SampTA) 2023
- J Shenouda, R Parhi, K Lee, RD Nowak Vector-Valued Variation Spaces and Width Bounds for DNNs: Insights on Weight Decay Regularization arXiv preprint arXiv:2305.16534
- R Parhi and RD Nowak Deep Learning Meets Sparse Regularization: A signal processing perspective in IEEE Signal Processing Magazine, vol. 40, no. 6, pp. 63-74, Sept. 2023
- L Yang, J Zhang, J Shenouda, D Papailiopoulos, K Lee, RD Nowak PathProx: A Proximal Gradient Algorithm for Weight Decay Regularized Deep Neural Networks. arXiv preprint arXiv:2210.03069
- R Parhi and RD Nowak, Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks in IEEE Transactions on Information Theory, vol. 69, no. 2, pp. 1125-1140, Feb. 2023
- R Parhi and RD Nowak Banach Space Representer Theorems for Neural Networks
- and Ridge Splines Journal of Machine Learning Research 2021
- R Parhi and RD Nowak On Continuous-Domain Inverse Problems With Sparse Superpositions of Decaying Sinusoids as Solutions ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 5603-5607
- Y Wen, N Jain, J Kirchenbauer, M Goldblum, J Geiping, T Goldstein, Hard Prompts Made Easy: Gradient-based Discrete Optimization for Prompt Tuning and Discovery in Advances in Neural Information Processing Systems 36, 2024, pp. 80.
- Y Wen, J Kirchenbauer, J Geiping, T Goldstein, Tree-Rings Watermarks: Invisible Fingerprints for Diffusion Images in Advances in Neural Information Processing Systems 36
- G Somepalli, V Singla, M Goldblum, J Geiping, T Goldstein, Understanding and Mitigating Copying in Diffusion Models in arXiv preprint arXiv:2305.20086.
- J Kirchenbauer, J Geiping, Y Wen, J Katz, I Miers, T Goldstein, A Watermark for Large Language Models in arXiv preprint arXiv:2301.10226.
- G Somepalli, V Singla, M Goldblum, J Geiping, T Goldstein, Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 119.
- Shah, A., Roy, A., Shah, K., Mishra, S., Jacobs, D., Cherian, A., & Chellappa, R. (2023). HaLP: Hallucinating Latent Positives for Skeleton-based Self-Supervised Learning of Actions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
- Shah, A., Lundell, B., Sawhney, H., & Chellappa, R. (2023). STEPs: Self-Supervised Key Step Extraction from Unlabeled Procedural Videos. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
- Roy, A., Shah, A., Shah, K., Dhar, P., Cherian, A., & Chellappa, R. (2022). FeLMi: Few shot Learning with hard Mixup. In Advances in Neural Information Processing Systems (NeurIPS)
- Pramanick, S., Han, G., Hou, R., Nag, S., Lim, S.-N., Ballas, N., Wang, Q., Chellappa, R., & Almahairi, A. (2024). Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
- Roy, A., Suin, M., Shah, A., Shah, K., Liu, J., & Chellappa, R. (n.d.). DiffNat: Improving diffusion image quality using natural image statistics, in arXiv preprint arXiv:2312.12423
- Roy, A., Shah, A., Shah, K., Roy, A., & Chellappa, R. (n.d.). Cap2Aug: Caption guided Image-to-Image data Augmentation, in arXiv preprint arXiv:2212.0540
- Wei, G., Wang, F., Shah, A., & Chellappa, R. (n.d.). Dual Prompt Tuning for Domain-Aware Federated Learning, in arXiv preprint arXiv:2310.0310
-
Goldblum, M., Tsipras, D., Xie, C., Chen, X., Schwarzschild, A., Song, D., Madry, A., Li, B., & Goldstein, T. Dataset security for machine learning: Data poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
- Gama, F., Zilberstein, N., Baraniuk, R. G., & Segarra, S. Unrolling Particles: Unsupervised Learning of Sampling Distributions, IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP’22, May 2022.
- Sapoval, N., Aghazadeh, A., Nute, M. G., Antunes, D. A., Balaji, A., Baraniuk, R. G., Barberan, C. J., Dannenfelser, R., Dun, C., Edrisi, M., & Elworth, R. A. Current progress and open challenges for applying deep learning across the biosciences. Nature Communications, 13(1), pp.1-12, 2022.
- Alemohammad, S., Babaei, H., Barberan, C. J., Liu, N., Luzi, L., Mason, B., & Baraniuk, R. G. NFT-K: Non-Fungible Tangent Kernels. IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP’22, May 2022.
- Humayun, A. I., Balestriero, R., Kyrillidis, A., & Baraniuk, R. G. No More Than 6ft Apart: Robust K-Means via Radius Upper Bounds. IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP’22, May 2022.
- Balestriero, R., Wang, Z., & Baraniuk, R. G. DeepHull: Fast Convex Hull Approximation in High Dimensions. IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP’22, May 2022.
- Barberan, C. J., Alemohammad, S., Liu, N., Balestriero, R., & Baraniuk, R. G. NeuroView-RNN: It's About Time. FAccT, 2022.
- Brenes, D., Barberan, C. J., Hunt, B., Parra, S. G., Salcedo, M. P., Possati-Resende, J. C., Cremer, M. L., Castle, P. E., Fregnani, J. H., Maza, M., & Schmeler, K. M. Multi-task network for automated analysis of high-resolution endomicroscopy images to detect cervical precancer and cancer, Computerized Medical Imaging and Graphics, 97, 2022.
- Saragadam, V., Balestriero, R., Veeraraghavan, A., & Baraniuk, R. G. DeepTensor: Low-Rank Tensor Decomposition with Deep Network Priors. arXiv:2204.03145, 2022.
- Dar, Y., LeJeune, D., & Baraniuk, R. G. The Common Intuition to Transfer Learning Can Win or Lose: Case Studies for Linear Regression. arXiv: 2103.05621v2, 2022.
-
Shrotri, A. A., Narodytska, N., Ignatiev, A., Meel, K. S., Marques-Silva, J., & Vardi, M. Y. Constraint-Driven Explanations for Black-Box ML Models. AAAI, 2022.
- Patil, P., Rinaldo, A. & Tibshirani, R. J. Estimating functionals of the out-of-sample error distribution in high-dimensional ridge regression. AISTATS, 2022.
- Li, W., Liu, S., & Osher, S. Controlling conservation laws II: Compressible Navier–Stokes equations. Journal of Computational Physics, 2022.
- Humayun, A. I., Balestriero, R. & Baraniuk, R. G. Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
- Humayun, A. I., Balestriero, R., & Baraniuk, R. G. Magnet: Uniform sampling from deep generative network manifolds without retraining. ICLR, 2022.
- Saragadam, V., Tan, J., Balakrishnan, G., Baraniuk, R. G., & Veeraraghavan, A. MINER: Multiscale Implicit Neural Representations. arXiv:2202.03532, 2022.
- Tibshirani, R. J. Divided Differences, Falling Factorials, and Discrete Splines: Another Look at Trend Filtering and Related Problems. Foundations and Trends in Machine Learning, Vol. 15, No. 6, 694-846, 2022.
-
Curry, M. J., Lyi, U., Goldstein, T., & Dickerson, J. P. Learning revenue-maximizing auctions with differentiable matching. AISTATS, 2022.
- Riedi, R. H., Balestriero, R., & Baraniuk, R. G., Singular Value Perturbation and Deep Network Optimization, Constructive Approximation, 2022.
- Lin, A.T., Debord, M., Estabridis, K., Hewer, G., Montufar, G., & Osher, S. Decentralized multi-agents by imitation of a centralized controller. In Mathematical and Scientific Machine Learning, PMLR. 2022.
- Pramanick, S., Roy, A., & Patel, V. M. Multimodal Learning using Optimal Transport for Sarcasm and Humor Detection. Winter Conference on Computer Vision, 2022.
- Tan, J., LeJeune, D., Mason, B., Javadi, H., & Baraniuk, R. G. Benign Overparameterization in Membership Inference with Early Stopping. arXiv:2205.14055, 2022.
- Tan, J., Mason, B., Javadi, H., & Baraniuk, R. G. Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference. arXiv:2202.01243, 2022.
- Baker, J., Xia, H., Wang, Y., Cherkaev, E., Narayan, A., Chen, L., Xin, J., Bertozzi, A. L., Osher, S. J., & Wang, B. Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs. arXiv:2204.0862, 2022.
- Heaton, H., Fung, S. W., & Osher, S. Global Solutions to Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs. arXiv:2202.11014, 2022.
- Shah, A., Sra, S., Chellappa, R., Cherian, A. Max-Margin Contrastive Learning. AAAI, 2022.
- Heaton, H., Fung, S. W., Lin, A.T., Osher, S., & Yin, W. Wasserstein-Based Projections with Applications to Inverse Problems. SIAM Journal on Mathematics of Data Science, 2022.
- Green, A., Balakrishnan, S. & Tibshirani, R. J. Minimax Optimal Regression over Sobolev Spaces via Laplacian Eigenmaps on Neighborhood Graphs. arXiv:2111.07394, 2021.
-
Ni, R. Shu, M., Souri, H., Goldblum, M., & Goldstein, T. The Close Relationship Between Contrastive Learning and Meta-Learning. ICLR, 2021.
- Barberan, C. J., Balestriero, R. & Baraniuk, R. G. NeuroView: Explainable Deep Network Decision Making, arXiv:2110.07778, 2021.
- Saragadam, V., Dave, A., Veeraraghavan, A. & Baraniuk, R. G. Thermal Image Processing via Physics-Inspired Deep Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
-
Shu, M., Wu, Z., Goldblum, M., & Goldstein, T. Encoding Robustness to Image Style via Adversarial Feature Perturbations. NeurIPS, 2021.
- Schwarzschild, A., Borgnia, E., Gupta, A., Huang, F., Vishkin, U., Goldblum, M., & Goldstein, T. Can you learn an algorithm? generalizing from easy to hard problems with recurrent networks. NeurIPS, 2021.
- Luzi, L., Marrero, C. O., Wynar, N., Baraniuk, R. G., & Henry, M. J. Evaluating generative networks using Gaussian mixtures of image features, arXiv:2110.05240, 2021.
- Xia, H., Suliafu, V., Ji, H., Nguyen, T., Bertozzi, A. L., Osher, S., & Wang, B. Heavy ball neural ordinary differential equations. NeurIPS, 2021.
- Nguyen, T., Suliafu, V., Osher, S., Chen, L., & Wang, B. Fmmformer: Efficient and flexible transformer via decomposed near-field and far-field attention. NeurIPS, 2021.
- Li, W., Liu, S., & Osher, S. Controlling conservation laws I: entropy-entropy flux. arXiv:2111.05473, 2021.
- Tan, J., Boominathan, V., Baraniuk, R. G., & Veeraraghavan, A. EDoF-ToF: Extended depth of field time-of-flight imaging. Optics Express, 29(23), 2021.
- Fung, S. W., Heaton, H., Li, Q., McKenzie, D., Osher, S., & Yin, W. Efficient training of infinite-depth neural networks via Jacobian-Free backpropagation. AMS Fall Western Sectional Meeting, 2021.
- Nguyen, T., Nguyen, T., Le, D., Nguyen, K., Tran, A., Baraniuk, R. G., Ho, N., & Osher, S. Improving transformers with probabilistic attention keys. ICML, 2021.
- Wang, B., Xia, H., Nguyen, T., & Osher, S. How does momentum benefit deep neural networks architecture design? a few case studies. arXiv:2110.07034, 2021.
- Thorpe, M., Nguyen, T. M., Xia, H., Strohmer, T., Bertozzi, A., Osher, S., & Wang, B. GRAND++: Graph neural diffusion with a source term. ICLR, 2021.
- Lin, A. T., Fung, S. W., Li, W., Nurbekyan, L., & Osher, S. Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games. Proceedings of the National Academy of Sciences (PNAS), 2021.
- Lin, A. T., Li, W., Osher, S., & Montúfar, G. Wasserstein proximal of GANs. In International Conference on Geometric Science of Information, 2021.
- Balestriero, R., & Baraniuk, R. G. Mad Max: Affine Spline Insights into Deep Learning. Proceedings of the IEEE (special issue on Advances in Machine Learning and Deep Neural Networks), 2021.
- Baraniuk, R. G., Donoho, L., & Gavish, M. The Science of Deep Learning. Proceedings of the National Academy of Sciences (PNAS), PNAS:117:48:30029, 2020.
- Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G., & Willett, R. Deep Learning Techniques for Inverse Problems in Imaging. IEEE Journal on Selected Topics in Information Theory (inaugural issue), 2020.
- Lejeune, D., Javadi, H., & Baraniuk, R. G. The Flip Side of the Reweighted Coin: Duality of Adaptive Dropout and Regularization. NeurIPS, 2021.
- Chaudhri, V. K., Boggess, M., Aung, H. L., Basu Mallick, D., Waters, A. C., & Baraniuk, R. G. Bootstrapping Ontology Graphs. Automated Knowledge Base Construction, 2021.
- Alemohammad, S., Balestriero, R., Wang, J., & Baraniuk, R. G. The Recurrent Neural Tangent Kernel. ICLR, 2021.
- Yao, T., LeJeune, D., Javadi, H., Baraniuk, R. G., & Allen, G. A. Minipatch Learning as Implicit Ridge- Like Regularization. IEEE International Conference on Big Data and Smart Computing, 2021.
- Balestriero, R., Paris, S., & Baraniuk, R. G. Analytical Probability Distributions and EM-Learning for Deep Generative Networks. NeurIPS, 2020.
- Nguyen, T. M., Ho, N., Patel, A., Anandkumar A., Jordan, M., & Baraniuk, R. G. A Bayesian Perspective of Convolutional Neural Networks through a Deconvolutional Generative Model. submitted to Journal of Machine Learning Research, arXiv preprint arxiv:1811.02657, 2020.
- Dar, Y. and Baraniuk, R. G. Double Double Descent: On Generalization Errors in Transfer Learning between LInear Regression Tasks. arXiv preprint arXiv:2006.07002, 2021.
- Luzi, L., Dar, Y., & Baraniuk, R. Double Descent and Other Interpolation Phenomena in GANs. arXiv preprint arXiv:2106.04003, 2021.
- Dar, Y., Muthukumar, V. & Baraniuk, R. G. A farewell to the bias-variance tradeoff? an overview of the theory of overparameterized machine learning. arXiv:2109.02355, 2021.
- Kota, P. K., LeJeune, D., Drezek, R. A., & Baraniuk, R. G. Extreme Compressed Sensing of Poisson Rates from Multiple Measurements. arXiv preprint arXiv:2103.08711, 2021.
- Green, A., Balakrishnan, S., Tibshirani, R. Minimax Optimal Regression over Sobolev Spaces via Laplacian Regularization on Neighborhood Graphs. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:2602-2610, 2021.
- Patik, P., Wei, Y., Rinaldo, A., Tibshirani, R. Uniform Consistency of Cross-Validation Estimators for High-Dimensional Ridge Regression. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:3178-3186, 2021.
- Goldblum, M., Reich, S., Fowl, L., Ni, R., Cherepanova, V., & Goldstein, T. Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks. ICML 2020, arXiv preprint arXiv:2002.06753, 2020.
- Huang, W., Emam, Z., Goldblum, M., Fowl, L., Terry, J.K., Huang, F., & Goldstein, T. Understanding Generalization through Visualizations. arXiv preprint arXiv:1906.03291, 2019.
- Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., & Goldstein, T. The Intrinsic Dimension of Images and Its Impact on Learning. ICLR, 2020.
- Sankararaman, K. A., De, So., Xu, Z., Huang, W. R., & Goldstein, T. The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent. ICML, 2020.
- Parhi, R. and Nowak, R. What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory. arXiv preprint arXiv:2105.03361, 2021.
- Daubechies, I., DeVore, R., Foucart, S., Hanin, B., & Petrova, G. Nonlinear Approximation and (Deep) ReLU Networks. arXiv preprint arXiv:1905.02199, 2020.
- DeVore, R., Hanin, B., & Petrova, G. Neural Network Approximation. arXiv preprint arXiv:2012.14501, 2020.
- Shah, A., Mishra, S., Bansal, A., Chen, J.C., Chellappa, R., & Srivastava, A. Pose And Joint-Aware Action Recognition. Winter Conference on Computer Vision, 2022.
- Pramanick, S., Roy, A., & Patel, V.M, Multimodal Learning using Optimal Transport for Sarcasm and Humor Detection. Winter Conference on Computer Vision, 2022.
- Nguyen, T. M., Baraniuk, R. G., Bertozzi, A., Osher, S., & Wang, B. MomentumRNN: Integrating Momentum into Recurrent Neural Networks. NeurIPS, 2020.
- Nguyen, T. M., Suliafu, V., Osher, S. J., Chen, L., & Wang, B. FMMformer: Efficient and Flexible Transformer via Decomposed Near-field and Far-field Attention. NeurIPS, 2021.
- Xia, H., Suliafu, V., Ji, H., Nguyen, T. M., Bertozzi, A. L., Osher, S. J., & Wang, B. Heavy Ball Neural Ordinary Differential Equations. NeurIPS, 2021.
- Wang, B., Nguyen, T. M., Bertozzi, A. L., Baraniuk, R. G., & Osher, S. J. Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent. arXiv preprint arXiv:2002.10583, 2020.
- Kyrillidis, A., Shrivastava, A., Vardi, M. Y., & Zhang Z. Solving Hybrid Boolean Constraints in Continuous Space via Multilinear Fourier Expansions. Artif. Intell. 299: 103559, 2021.
- Kyrillidis, A., Vardi M. Y., Zhang, Z. On Continuous Local BDD-Based Search for Hybrid SAT Solving. AAAI: 3841-3850, 2021.
- Dudek, J. M., Phan, V. H, N., & Vardi, M. Y. ProCount: Weighted Projected Model Counting with Graded Project-Join Trees. SAT: 152-170, 2021.